Heptiamond Pair Parallelograms

Introduction

A heptiamond is a plane figure formed by joining 7 equal equilateral triangles edge to edge. There are 24 heptiamonds:

A parallelogram is a quadrilateral whose pairs of opposite sides are parallel.

Here I show the smallest known parallelograms that can be formed by copies of two heptiamonds, using at least one of each. If you find a smaller solution or solve an unsolved pair, please write.

See also

  • Tiling a Triangle with a Pair of Heptiamonds
  • Heptiamond Pair Trapezia/Trapezoids
  • Table

     ABCDEFGHIJKLMNPQRSTUVXYZ
    A*???6???24??3012???????????
    B?*?4??6?8???????????????
    C??*???48?4??12????????????
    D?4?*6??44?86????????????
    E6??6*?4622????4??8?????8?
    F?????*61212??6660??????????
    G?648?46*104?1210??1810104????44
    H???461210*88??????6??3210???
    I24844221248*164842442416161210321008888
    J???????816*?66???????????
    K???8??12?48?*?????????????
    L30?126?610?46?*????12???????
    M12????6??246??*???????????
    N????460??4????*??64????44
    P??????18?24?????*?????????
    Q??????10?16??????*????????
    R????8?10616??12?6??*???????
    S??????4?12????4???*??????
    T????????10?????????*?????
    U???????3232??????????*????
    V???????10100???????????*???
    X????????88????????????*??
    Y????8?4?8????4????????*?
    Z??????4?8????4?????????*

    Solutions

    4 Tiles

    6 Tiles

    8 Tiles

    10 Tiles

    12 Tiles

    16 Tiles

    18 Tiles

    22 Tiles

    24 Tiles

    30 Tiles

    32 Tiles

    48 Tiles

    60 Tiles

    88 Tiles

    100 Tiles

    Last revised 2025-04-08.


    Back to Polyiamond and Polyming Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]