Convex Polygons From a Scaled Hexiamond and a Scaled Heptiamond

Introduction

Given a hexiamond and a heptiamond that may be scaled up, how few copies of them can be joined to form a convex shape? Such a shape must be a triangle, quadrilateral, pentagon, or hexagon.

Here I show minimal known convex polygons formed by a given scaled hexiamond and scaled heptiamond. If you find a smaller solution or solve an unsolved case, please write.

Carl Schwenke and Johann Schwenke found many new and improved solutions.

Hexiamond Numbers

Heptiamond Numbers

Table

 123456789101112131415161718192021222324
1247434456472587677969964
24376535555172767511767101975
366667833212315884
43677467861063811610116101081257
54331261821044181831641524661566
634465236551327684868101210106
7368746687101328148681314101717107
88815125812158441264424
985278113363
1027104724154
113587556666638810698969477
1255563

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

9 Tiles

10 Tiles

11 Tiles

12 Tiles

13 Tiles

14 Tiles

15 Tiles

16 Tiles

17 Tiles

18 Tiles

19 Tiles

24 Tiles

27 Tiles

44 Tiles

63 Tiles

Last revised 2025-11-03.


Back to Convex Polygons from Pairs of Polyiamonds < Polyiamond and Polyming Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]