Convex Polygons From Pairs of Scaled Heptiamonds

Given two heptiamonds that may be scaled up, how few copies of them can be joined to form a convex shape? Such a shape must be a triangle, quadrilateral, pentagon, or hexagon.

Here I show minimal known convex polygons formed by pairs of scaled heptiamonds. If you find a smaller solution or solve an unsolved case, please write.

Carl Schwenke and Johann Schwenke found many new and improved solutions.

Heptiamond Numbers

Table

 123456789101112131415161718192021222324
1312433410847213115484186151566
2387610541451021410661064141837866
312861014441042416841432166
447105537824167821687378534661624
5366106667646610410168618
63101056444564616816862
7451456444441622441042106
81043786244267218
981442464441641637861502454
104541674464443018284421010
117101078644442
1222424424434444542
131314216844410410
1411104764430458344212
1556168378641616183437442
1646451056242428445834168101012106
17810143444164410344168
1846326610624672378416842
191841616164674104230
2061481681015042410168
21151861684210541242
2215378
236662418610182410424104242101683016842
246626542126

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

10 Tiles

11 Tiles

12 Tiles

13 Tiles

14 Tiles

15 Tiles

16 Tiles

18 Tiles

24 Tiles

28 Tiles

30 Tiles

32 Tiles

34 Tiles

42 Tiles

54 Tiles

56 Tiles

58 Tiles

66 Tiles

74 Tiles

78 Tiles

150 Tiles

168 Tiles

378 Tiles

672 Tiles

Last revised 2025-11-02.


Back to Convex Polygons from Pairs of Scaled Polyiamonds < Polyiamond and Polyming Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]