Here I show minimal known convex polygons formed by pairs of scaled heptiamonds. If you find a smaller solution or solve an unsolved case, please write.
Carl Schwenke and Johann Schwenke found many new and improved solutions.
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | • | 3 | 12 | 4 | 3 | 3 | 4 | 10 | 8 | 4 | 7 | 2 | 13 | 11 | 5 | 4 | 8 | 4 | 18 | 6 | 15 | 15 | 6 | 6 |
| 2 | 3 | • | 8 | 7 | 6 | 10 | 5 | 4 | 14 | 5 | 10 | 2 | 14 | 10 | 6 | 6 | 10 | 6 | 4 | 14 | 18 | 378 | 6 | 6 |
| 3 | 12 | 8 | • | — | 6 | 10 | 14 | — | 4 | 4 | 10 | 4 | 2 | 4 | 168 | 4 | 14 | 32 | 16 | — | — | — | 6 | — |
| 4 | 4 | 7 | — | • | 10 | 5 | 5 | 378 | 24 | 16 | 78 | 2 | 168 | 7 | 378 | 5 | 34 | 66 | 16 | — | — | — | 24 | — |
| 5 | 3 | 6 | 6 | 10 | • | 6 | 6 | — | 6 | 7 | 6 | 4 | — | 6 | 6 | 10 | 4 | 10 | 16 | 8 | 6 | — | 18 | — |
| 6 | 3 | 10 | 10 | 5 | 6 | • | 4 | — | — | 4 | — | — | — | — | 4 | 56 | 4 | 6 | — | 168 | 168 | — | 6 | 2 |
| 7 | 4 | 5 | 14 | 5 | 6 | 4 | • | — | 4 | 4 | — | 4 | — | 4 | 16 | 2 | — | 24 | 4 | 10 | 42 | — | 10 | 6 |
| 8 | 10 | 4 | — | 378 | — | — | — | • | — | 6 | — | 2 | — | 4 | — | 42 | — | 672 | — | — | — | — | 18 | — |
| 9 | 8 | 14 | 4 | 24 | 6 | — | 4 | — | • | 4 | — | 4 | — | — | 16 | 4 | 16 | 378 | 6 | 150 | — | — | 24 | 54 |
| 10 | 4 | 5 | 4 | 16 | 7 | 4 | 4 | 6 | 4 | • | 4 | 4 | — | 30 | 18 | 28 | 4 | — | — | 42 | 10 | — | 10 | — |
| 11 | 7 | 10 | 10 | 78 | 6 | — | — | — | — | 4 | • | — | 4 | — | — | 4 | — | — | — | — | — | — | 42 | — |
| 12 | 2 | 2 | 4 | 2 | 4 | — | 4 | 2 | 4 | 4 | — | • | — | — | 3 | 4 | 4 | 4 | — | 4 | 5 | — | 4 | 2 |
| 13 | 13 | 14 | 2 | 168 | — | — | — | — | — | — | 4 | — | • | 4 | 4 | — | 10 | — | — | — | 4 | — | 10 | — |
| 14 | 11 | 10 | 4 | 7 | 6 | — | 4 | 4 | — | 30 | — | — | 4 | • | — | 58 | 34 | — | — | — | — | — | 42 | 12 |
| 15 | 5 | 6 | 168 | 378 | 6 | 4 | 16 | — | 16 | 18 | — | 3 | 4 | — | • | 3 | — | — | 74 | — | — | — | 42 | — |
| 16 | 4 | 6 | 4 | 5 | 10 | 56 | 2 | 42 | 4 | 28 | 4 | 4 | — | 58 | 3 | • | 4 | 168 | 10 | 10 | 12 | — | 10 | 6 |
| 17 | 8 | 10 | 14 | 34 | 4 | 4 | — | — | 16 | 4 | — | 4 | 10 | 34 | — | 4 | • | — | — | — | — | — | 168 | — |
| 18 | 4 | 6 | 32 | 66 | 10 | 6 | 24 | 672 | 378 | — | — | 4 | — | — | — | 168 | — | • | 42 | — | — | — | — | — |
| 19 | 18 | 4 | 16 | 16 | 16 | — | 4 | — | 6 | — | — | — | — | — | 74 | 10 | — | 42 | • | — | — | — | 30 | — |
| 20 | 6 | 14 | — | — | 8 | 168 | 10 | — | 150 | 42 | — | 4 | — | — | — | 10 | — | — | — | • | — | — | 168 | — |
| 21 | 15 | 18 | — | — | 6 | 168 | 42 | — | — | 10 | — | 5 | 4 | — | — | 12 | — | — | — | — | • | — | 42 | — |
| 22 | 15 | 378 | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | — | • | — | — |
| 23 | 6 | 6 | 6 | 24 | 18 | 6 | 10 | 18 | 24 | 10 | 42 | 4 | 10 | 42 | 42 | 10 | 168 | — | 30 | 168 | 42 | — | • | — |
| 24 | 6 | 6 | — | — | — | 2 | 6 | — | 54 | — | — | 2 | — | 12 | — | 6 | — | — | — | — | — | — | — | • |
Last revised 2025-11-02.