Here I combine Zucca's two problems and show compatibility figures for three pentominoes with an odd number of tiles!
His solution has 61 tiles! Smaller solutions have since been found. See the table below.
| 5F+5I+5L | 5F+5I+5N | 5F+5I+5P | 5F+5I+5T | 5F+5I+5U |
|---|---|---|---|---|
![]() 23 |
| ![]() 13 |
|
|
| 5F+5I+5V | 5F+5I+5W | 5F+5I+5X | 5F+5I+5Y | 5F+5I+5Z |
|
|
| ![]() 21 |
|
| 5F+5L+5N | 5F+5L+5P | 5F+5L+5T | 5F+5L+5U | 5F+5L+5V |
![]() 11 | ![]() 7 | ![]() 19 |
| ![]() 11 |
| 5F+5L+5W | 5F+5L+5X | 5F+5L+5Y | 5F+5L+5Z | 5F+5N+5P |
![]() 15 |
| ![]() 7 | ![]() 23 | ![]() 5 |
| 5F+5N+5T | 5F+5N+5U | 5F+5N+5V | 5F+5N+5W | 5F+5N+5X |
![]() 25 | ![]() 27 | ![]() 15 | ![]() 9 | ![]() 33 |
| 5F+5N+5Y | 5F+5N+5Z | 5F+5P+5T | 5F+5P+5U | 5F+5P+5V |
![]() 7 | ![]() 13 | ![]() 11 | ![]() 17 | ![]() 9 |
| 5F+5P+5W | 5F+5P+5X | 5F+5P+5Y | 5F+5P+5Z | 5F+5T+5U |
![]() 7 | ![]() 19 | ![]() 7 | ![]() 13 | ![]() |
| 5F+5T+5V | 5F+5T+5W | 5F+5T+5X | 5F+5T+5Y | 5F+5T+5Z |
|
|
| ![]() 13 | ![]() |
| 5F+5U+5V | 5F+5U+5W | 5F+5U+5X | 5F+5U+5Y | 5F+5U+5Z |
| ![]() 21 |
|
|
|
| 5F+5V+5W | 5F+5V+5X | 5F+5V+5Y | 5F+5V+5Z | 5F+5W+5X |
|
|
|
|
|
| 5F+5W+5Y | 5F+5W+5Z | 5F+5X+5Y | 5F+5X+5Z | 5F+5Y+5Z |
![]() 13 |
| ![]() 17 |
| ![]() 21 |
| 5I+5L+5N | 5I+5L+5P | 5I+5L+5T | 5I+5L+5U | 5I+5L+5V |
| ![]() 7 |
|
|
|
| 5I+5L+5W | 5I+5L+5X | 5I+5L+5Y | 5I+5L+5Z | 5I+5N+5P |
|
| ![]() 11 |
| ![]() 11 |
| 5I+5N+5T | 5I+5N+5U | 5I+5N+5V | 5I+5N+5W | 5I+5N+5X |
|
|
|
|
|
| 5I+5N+5Y | 5I+5N+5Z | 5I+5P+5T | 5I+5P+5U | 5I+5P+5V |
![]() 13 |
|
|
| ![]() 29 |
| 5I+5P+5W | 5I+5P+5X | 5I+5P+5Y | 5I+5P+5Z | 5I+5T+5U |
![]() 17 |
| ![]() 9 |
|
|
| 5I+5T+5V | 5I+5T+5W | 5I+5T+5X | 5I+5T+5Y | 5I+5T+5Z |
|
|
|
|
|
| 5I+5U+5V | 5I+5U+5W | 5I+5U+5X | 5I+5U+5Y | 5I+5U+5Z |
|
|
|
|
|
| 5I+5V+5W | 5I+5V+5X | 5I+5V+5Y | 5I+5V+5Z | 5I+5W+5X |
|
|
|
|
|
| 5I+5W+5Y | 5I+5W+5Z | 5I+5X+5Y | 5I+5X+5Z | 5I+5Y+5Z |
![]() 29 |
|
|
|
|
| 5L+5N+5P | 5L+5N+5T | 5L+5N+5U | 5L+5N+5V | 5L+5N+5W |
![]() 5 | ![]() 35 |
| ![]() 13 | ![]() 11 |
| 5L+5N+5X | 5L+5N+5Y | 5L+5N+5Z | 5L+5P+5T | 5L+5P+5U |
| ![]() 19 |
| ![]() 13 | ![]() 13 |
| 5L+5P+5V | 5L+5P+5W | 5L+5P+5X | 5L+5P+5Y | 5L+5P+5Z |
![]() 7 | ![]() 7 |
| ![]() 7 | ![]() 23 |
| 5L+5T+5U | 5L+5T+5V | 5L+5T+5W | 5L+5T+5X | 5L+5T+5Y |
| ![]() 15 |
|
| ![]() 15 |
| 5L+5T+5Z | 5L+5U+5V | 5L+5U+5W | 5L+5U+5X | 5L+5U+5Y |
|
|
|
|
|
| 5L+5U+5Z | 5L+5V+5W | 5L+5V+5X | 5L+5V+5Y | 5L+5V+5Z |
| ![]() 23 |
| ![]() 19 |
|
| 5L+5W+5X | 5L+5W+5Y | 5L+5W+5Z | 5L+5X+5Y | 5L+5X+5Z |
| ![]() 13 |
|
|
|
| 5L+5Y+5Z | 5N+5P+5T | 5N+5P+5U | 5N+5P+5V | 5N+5P+5W |
![]() 19 | ![]() 23 | ![]() 15 | ![]() 19 | ![]() 7 |
| 5N+5P+5X | 5N+5P+5Y | 5N+5P+5Z | 5N+5T+5U | 5N+5T+5V |
![]() 33 | ![]() 7 | ![]() 21 |
|
|
| 5N+5T+5W | 5N+5T+5X | 5N+5T+5Y | 5N+5T+5Z | 5N+5U+5V |
|
|
|
|
|
| 5N+5U+5W | 5N+5U+5X | 5N+5U+5Y | 5N+5U+5Z | 5N+5V+5W |
|
|
|
|
|
| 5N+5V+5X | 5N+5V+5Y | 5N+5V+5Z | 5N+5W+5X | 5N+5W+5Y |
![]() |
|
| ![]() |
|
| 5N+5W+5Z | 5N+5X+5Y | 5N+5X+5Z | 5N+5Y+5Z | 5P+5T+5U |
|
| ![]() |
![]() 51 |
|
| 5P+5T+5V | 5P+5T+5W | 5P+5T+5X | 5P+5T+5Y | 5P+5T+5Z |
![]() 15 |
|
| ![]() 19 |
|
| 5P+5U+5V | 5P+5U+5W | 5P+5U+5X | 5P+5U+5Y | 5P+5U+5Z |
| ![]() 19 | ![]() |
|
|
| 5P+5V+5W | 5P+5V+5X | 5P+5V+5Y | 5P+5V+5Z | 5P+5W+5X |
![]() 21 | ![]() |
![]() 19 |
|
|
| 5P+5W+5Y | 5P+5W+5Z | 5P+5X+5Y | 5P+5X+5Z | 5P+5Y+5Z |
![]() 11 | ![]() 15 | ![]() 29 | ![]() |
![]() 11 |
| 5T+5U+5V | 5T+5U+5W | 5T+5U+5X | 5T+5U+5Y | 5T+5U+5Z |
|
|
|
|
|
| 5T+5V+5W | 5T+5V+5X | 5T+5V+5Y | 5T+5V+5Z | 5T+5W+5X |
|
|
|
|
|
| 5T+5W+5Y | 5T+5W+5Z | 5T+5X+5Y | 5T+5X+5Z | 5T+5Y+5Z |
|
|
|
|
|
| 5U+5V+5W | 5U+5V+5X | 5U+5V+5Y | 5U+5V+5Z | 5U+5W+5X |
|
|
|
|
|
| 5U+5W+5Y | 5U+5W+5Z | 5U+5X+5Y | 5U+5X+5Z | 5U+5Y+5Z |
|
|
|
|
|
| 5V+5W+5X | 5V+5W+5Y | 5V+5W+5Z | 5V+5X+5Y | 5V+5X+5Z |
![]() |
|
| ![]() |
|
| 5V+5Y+5Z | 5W+5X+5Y | 5W+5X+5Z | 5W+5Y+5Z | 5X+5Y+5Z |
| ![]() |
![]() |
| ![]() |
Last updated 2017-08-26.