Pentahex Pair Parallelogram Tilings

Introduction

On this page, for each pair of pentahexes, I show a tiling of a parallelogrammatic polyhex with the fewest known cells, using at least one copy of each pentahex of the pair. If you find a smaller solution or solve an unsolved case, please write.

Carl Schwenke and Johann Schwenke contributed solutions.

Catalogue of Pentahexes

Table of Results

 ACDEFHIJKLNPQRSTUVWXYZ
A6446664463468366
C66424418669
D46612123444444331263123312
E44264664686464271328166568
F612444221284
H12628148810
I6443644282114343221633238174633156312
J64421161841244
K446141646646
L418482214318443147181416642144
N664612844644610166181216344
P36448831263466312666744
Q4462214664
R63416471063
S327331816333
T121322381461210
U868174161864
V316646126344
W1263341666
X33515621375
Y69364103464444331044654
Z61281244444

Navigation

  • 3 Tiles
  • 4 Tiles
  • 5 Tiles
  • 6 Tiles
  • 7 Tiles
  • 8 Tiles
  • 9 Tiles
  • 10 Tiles
  • 12 Tiles
  • 14 Tiles
  • 16 Tiles
  • 18 Tiles
  • 21 Tiles
  • 22 Tiles
  • 27 Tiles
  • 28 Tiles
  • 33 Tiles
  • 42 Tiles
  • 44 Tiles
  • 132 Tiles
  • 156 Tiles
  • 174 Tiles
  • 238 Tiles
  • 3 Tiles

    4 Tiles

    5 Tiles

    6 Tiles

    7 Tiles

    8 Tiles

    9 Tiles

    10 Tiles

    12 Tiles

    14 Tiles

    16 Tiles

    18 Tiles

    21 Tiles

    22 Tiles

    27 Tiles

    28 Tiles

    33 Tiles

    42 Tiles

    44 Tiles

    132 Tiles

    156 Tiles

    174 Tiles

    238 Tiles

    Last revised 2025-09-10.


    Back to Polyhex Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]