Tiling a Trapezial Polyhex with Two Pentahexes

Introduction

A polyhex is a plane figure formed by joining equal regular hexagons edge to edge. A pentahex is a polyhex with 5 cells. There are 22 pentahexes, not distinguishing reflections and rotations.

A polyhex is trapezial if its cells are those whose centers lie in or on an isosceles trapezium oriented parallel to the polyhex grid. Here I study the problem of arranging copies of two given pentahexes to form a trapezial polyhex.

A triangular polyhex is an extreme form of a trapezial polyhex. Many of the solutions below are triangular. See the bottom of the page for non-triangular variants.

Nomenclature

Table of Results

This table shows the number of tiles in the smallest known trapezial polyhexes. If you find a smaller solution or solve an unsolved pair, please write.

 ACDEFHIJKLNPQRSTUVWXYZ
A4232791196369204959
C4254296
D353914356333534135393212
E24235947956396602947179459
F79552157
H1493989
I93452391418347331884495439
J115714203183
K9691820191265
L635319412205
N3936158431243610156181212657
P633763573
Q9593366
R20361818121054
S46084154
T13294613
U457187
V31749126
W9954127
X93420677
Y5625793355536441376776
Z9129976

Navigation

[2 Tiles] [3 Tiles] [4 Tiles] [5 Tiles] [6 Tiles] [7 Tiles] [8 Tiles] [9 Tiles] [10 Tiles] [11 Tiles] [12 Tiles] [13 Tiles] [14 Tiles] [15 Tiles] [17 Tiles] [18 Tiles] [19 Tiles] [20 Tiles] [33 Tiles] [39 Tiles] [42 Tiles] [49 Tiles] [52 Tiles] [54 Tiles] [60 Tiles] [84 Tiles] [294 Tiles] [Non-Triangular Variants]

2 Tiles

3 Tiles

4 Tiles

5 Tiles

6 Tiles

7 Tiles

8 Tiles

9 Tiles

10 Tiles

11 Tiles

12 Tiles

13 Tiles

14 Tiles

15 Tiles

17 Tiles

18 Tiles

19 Tiles

20 Tiles

33 Tiles

39 Tiles

42 Tiles

49 Tiles

52 Tiles

54 Tiles

60 Tiles

84 Tiles

294 Tiles

Non-Triangular Variants

Last revised 2025-08-21.


Back to Polyhex Tiling < Polyform Tiling < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]