A polyhex is trapezial if its cells are those whose centers lie in or on an isosceles trapezium oriented parallel to the polyhex grid. Here I study the problem of arranging copies of two given pentahexes to form a trapezial polyhex.
A triangular polyhex is an extreme form of a trapezial polyhex. Many of the solutions below are triangular. See the bottom of the page for non-triangular variants.
A | C | D | E | F | H | I | J | K | L | N | P | Q | R | S | T | U | V | W | X | Y | Z | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | • | 42 | 3 | 2 | 7 | — | 9 | 11 | 9 | 6 | 3 | 6 | 9 | 20 | — | — | 4 | — | — | 9 | 5 | 9 |
C | 42 | • | 5 | 42 | — | — | — | — | — | — | 9 | — | — | — | — | — | — | — | — | — | 6 | — |
D | 3 | 5 | • | 3 | 9 | 14 | 3 | 5 | 6 | 3 | 3 | 3 | 5 | 3 | 4 | 13 | 5 | 3 | 9 | 3 | 2 | 12 |
E | 2 | 42 | 3 | • | 5 | 9 | 4 | 7 | 9 | 5 | 6 | 3 | 9 | 6 | 60 | 294 | 7 | 17 | 9 | 4 | 5 | 9 |
F | 7 | — | 9 | 5 | • | — | 52 | — | — | — | 15 | — | — | — | — | — | — | — | — | — | 7 | — |
H | — | — | 14 | 9 | — | • | 39 | — | — | — | 8 | — | — | — | — | — | — | — | — | — | 9 | — |
I | 9 | — | 3 | 4 | 52 | 39 | • | 14 | 18 | 3 | 4 | 7 | 33 | 18 | 84 | — | — | 49 | 54 | — | 3 | 9 |
J | 11 | — | 5 | 7 | — | — | 14 | • | 20 | — | 3 | — | — | 18 | — | — | — | — | — | — | 3 | — |
K | 9 | — | 6 | 9 | — | — | 18 | 20 | • | 19 | 12 | 6 | — | — | — | — | — | — | — | — | 5 | — |
L | 6 | — | 3 | 5 | — | — | 3 | — | 19 | • | 4 | — | — | 12 | — | — | — | — | — | 20 | 5 | — |
N | 3 | 9 | 3 | 6 | 15 | 8 | 4 | 3 | 12 | 4 | • | 3 | 6 | 10 | 15 | 6 | 18 | 12 | 12 | 6 | 5 | 7 |
P | 6 | — | 3 | 3 | — | — | 7 | — | 6 | — | 3 | • | — | 5 | — | — | — | — | — | 7 | 3 | — |
Q | 9 | — | 5 | 9 | — | — | 33 | — | — | — | 6 | — | • | — | — | — | — | — | — | — | 6 | — |
R | 20 | — | 3 | 6 | — | — | 18 | 18 | — | 12 | 10 | 5 | — | • | — | — | — | — | — | — | 4 | — |
S | — | — | 4 | 60 | — | — | 84 | — | — | — | 15 | — | — | — | • | — | — | — | — | — | 4 | — |
T | — | — | 13 | 294 | — | — | — | — | — | — | 6 | — | — | — | — | • | — | — | — | — | 13 | — |
U | 4 | — | 5 | 7 | — | — | — | — | — | — | 18 | — | — | — | — | — | • | — | — | — | 7 | — |
V | — | — | 3 | 17 | — | — | 49 | — | — | — | 12 | — | — | — | — | — | — | • | — | — | 6 | — |
W | — | — | 9 | 9 | — | — | 54 | — | — | — | 12 | — | — | — | — | — | — | — | • | — | 7 | — |
X | 9 | — | 3 | 4 | — | — | — | — | — | 20 | 6 | 7 | — | — | — | — | — | — | — | • | 7 | — |
Y | 5 | 6 | 2 | 5 | 7 | 9 | 3 | 3 | 5 | 5 | 5 | 3 | 6 | 4 | 4 | 13 | 7 | 6 | 7 | 7 | • | 6 |
Z | 9 | — | 12 | 9 | — | — | 9 | — | — | — | 7 | — | — | — | — | — | — | — | — | — | 6 | • |
Last revised 2025-08-21.