Here I show the smallest polyiamond with full symmetry that can be tiled by a pentiamond and a hexiamond, using at least one copy of each. The solutions shown are not necessarily uniquely minimal.
See also Baiocchi Figures for Pentiamond-Heptiamond Pairs.
5I+6A : 66 | 5J+6A : 54 | 5Q+6A : 66 | 5U+6A : 36 |
---|---|---|---|
![]() | ![]() | ![]() | ![]() |
5I+6E : 66 | 5J+6E : 42 | 5Q+6E : 66 | 5U+6E : 42 |
![]() | ![]() | ![]() | ![]() |
5I+6F : 48 | 5J+6F : 48 | 5Q+6F : 54 | 5U+6F : 48 |
![]() | ![]() | ![]() | ![]() |
5I+6H : 48 | 5J+6H : 42 | 5Q+6H : 66 | 5U+6H : 48 |
![]() | ![]() | ![]() | ![]() |
5I+6I : 54 | 5J+6I : 48 | 5Q+6I : 42 | 5U+6I : 66 |
![]() | ![]() | ![]() | ![]() |
5I+6L : 48 | 5J+6L : 42 | 5Q+6L : 48 | 5U+6L : 66 |
![]() | ![]() | ![]() | ![]() |
5I+6O : 48 | 5J+6O : 42 | 5Q+6O : 36 | 5U+6O : 36 |
![]() | ![]() | ![]() | ![]() |
5I+6P : 54 | 5J+6P : 48 | 5Q+6P : 54 | 5U+6P : 66 |
![]() | ![]() | ![]() | ![]() |
5I+6S : 66 | 5J+6S : 42 | 5Q+6S : 48 | 5U+6S : 66 |
![]() | ![]() | ![]() | ![]() |
5I+6U : 66 | 5J+6U : 42 | 5Q+6U : 48 | 5U+6U : 48 |
![]() | ![]() | ![]() | ![]() |
5I+6V : 42 | 5J+6V : 48 | 5Q+6V : 48 | 5U+6V : 48 |
![]() | ![]() | ![]() | ![]() |
5I+6X : 54 | 5J+6X : 66 | 5Q+6X : 66 | 5U+6X : 48 |
![]() | ![]() | ![]() | ![]() |
Last revised 2024-11-13.