Baiocchi Figures for Pentiamond-Hexiamond Pairs

Introduction

A pentiamond is a plane figure formed by joining 5 equilateral triangles edge to edge. A hexiamond is a plane figure formed by joining 6 equilateral triangles edge to edge.

Here I show the smallest polyiamond with full symmetry that can be tiled by a pentiamond and a hexiamond, using at least one copy of each. The solutions shown are not necessarily uniquely minimal.

See also Baiocchi Figures for Pentiamond-Heptiamond Pairs.

Basic Solutions

5I+6A : 665J+6A : 545Q+6A : 665U+6A : 36
5I+6E : 665J+6E : 425Q+6E : 665U+6E : 42
5I+6F : 485J+6F : 485Q+6F : 545U+6F : 48
5I+6H : 485J+6H : 425Q+6H : 665U+6H : 48
5I+6I : 545J+6I : 485Q+6I : 425U+6I : 66
5I+6L : 485J+6L : 425Q+6L : 485U+6L : 66
5I+6O : 485J+6O : 425Q+6O : 365U+6O : 36
5I+6P : 545J+6P : 485Q+6P : 545U+6P : 66
5I+6S : 665J+6S : 425Q+6S : 485U+6S : 66
5I+6U : 665J+6U : 425Q+6U : 485U+6U : 48
5I+6V : 425J+6V : 485Q+6V : 485U+6V : 48
5I+6X : 545J+6X : 665Q+6X : 665U+6X : 48

Holeless Variants

54 Cells

60 Cells

72 Cells

78 Cells

84 Cells

96 Cells

114 Cells

No Holeless Solution

Last revised 2024-11-13.


Back to Baiocchi Figures < Polyform Curiosities
Col. George Sicherman [ HOME | MAIL ]