Convex Shapes from Isolated Hexiamond Pairs

A hexiamond is a plane figure formed by joining six equal equilateral triangles edge to edge.

Here I show the smallest known convex shapes that can be formed by copies of two hexiamonds, using at least one of each, and strongly isolating the copies of one so that they do not touch, not even at corners. If you find a smaller solution, please write.

See also

  • Convex Polygons from Pairs of Polyiamonds
  • Isolated Pentomino Pair Rectangles
  • Isolated Hexomino Pair Rectangles, at Andrew's Blog
  • Table of Results

    A yellow cell indicates a pair for which no convex shape is known even without isolation.

      Isolated Hexiamond
    ILEVUFAHSOPX
    I * 9 ? 4 16 4 4 23 17 3 4 ?
    L 5 * 7 7 4 5 4 7 7 4 6 8
    E ? ? * ? ? 4 ? ? ? ? ? ?
    V 3 21 ? * 22 12 10 12 61 4 2 22
    U 8 4 3 8 * 21 ? 7 3 13 4 32
    F 3 4 10 10 5 * 2 9 7 21 4 17
    A 3 22 ? 10 12 2 * 30 ? 25 11 ?
    H 12 9 ? 35 7 6 ? * ? 12 4 ?
    S ? ? ? 18 3 ? ? ? * ? 3 ?
    O ? ? ? 5 ? ? ? ? ? * 4 3
    P 3 6 14 2 3 4 16 5 3 3 * 7
    X ? ? ? 4 ? ? ? ? ? 3 ? *

    2 Tiles

    3 Tiles

    4 Tiles

    5 Tiles

    6 Tiles

    7 Tiles

    8 Tiles

    9 Tiles

    10 Tiles

    11 Tiles

    12 Tiles

    13 Tiles

    14 Tiles

    16 Tiles

    17 Tiles

    18 Tiles

    21 Tiles

    22 Tiles

    23 Tiles

    25 Tiles

    30 Tiles

    32 Tiles

    35 Tiles

    61 Tiles

    Last revised 2025-05-25.


    Back to Polyiamond and Polyming Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]