Heptiamond Pair Pentagons

Introduction

A heptiamond is a plane figure formed by joining 7 equal equilateral triangles edge to edge. There are 24 heptiamonds:

Here I show the smallest known pentagonal (five-sided) polyiamonds that can be formed by copies of two heptiamonds, using at least one of each. If you find a smaller solution, please write.

See also

  • Hexiamond Pair Pentagons
  • Pentiamond-Hexiamond Pair Pentagons
  • Pentiamond-Heptiamond Pair Pentagons
  • Table

     ABCDEFGHIJKLMNPQRSTUVXYZ
    A*???8???28??436???????????
    B?*?3??8?3???????????????
    C??*48???4??26????28???????
    D?34*7??33?72????2??2????
    E8?87*?9167????23??25???2?33?
    F?????*2208??53838??????????
    G?8??92*393?462???86????33
    H???3162039*413??????12??18????
    I283437834*932227124961643?811223
    J???????139*?42???????????
    K???7??4?32?*?????????????
    L4?262?56?24?*????7???????
    M36????382?22??*???????????
    N????2338??7????*??936????1668
    P????????12?????*?????????
    Q????????4??????*????????
    R??28225?8129??7?9??*41??????
    S??????6?6????36??41*??????
    T????????16?????????*?????
    U???2???1843??????????*????
    V????2???????????????*???
    X????????81????????????*??
    Y????33?3?12????16????????*?
    Z??????3?23????68?????????*

    2 Tiles

    3 Tiles

    4 Tiles

    5 Tiles

    6 Tiles

    7 Tiles

    8 Tiles

    9 Tiles

    12 Tiles

    13 Tiles

    16 Tiles

    18 Tiles

    20 Tiles

    23 Tiles

    25 Tiles

    26 Tiles

    28 Tiles

    32 Tiles

    33 Tiles

    36 Tiles

    38 Tiles

    39 Tiles

    41 Tiles

    43 Tiles

    68 Tiles

    81 Tiles

    Last revised 2025-03-03.


    Back to Polyiamond and Polyming Tiling < Polyform Tiling < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]