Horizontally Symmetric Tri-Oddities for Heptiamond Pairs

A heptiamond is a plane figure formed by joining 7 equal equilateral triangles edge to edge. There are 24 heptiamonds:

A tri-oddity is an arrangement of copies of a polyform with ternary rotary symmetry or better, using a number of copies that is not a multiple of 3.

Here I show the smallest known tri-oddities with horizontal mirror symmetry that can be formed by copies of two heptiamonds, using at least one of each. If you find a smaller solution, or solve an unsolved pair, please write.

See also

  • Tri-Oddities for Heptiamond Pairs
  • Hexiamond Pair Tri-Oddities
  • AB 22AC 19AD 19AE 13AF 19AG 46
    AH 13AI 34AJ ?AK 7AL 19AM ?
    AN 22AP 16AQ 22AR 22AS 10AT ?
    AU 61AV ?AX 13AY 13AZ 40BC 19
    BD 16BE 16BF 16BG 16BH 22BI 13
    BJ 19BK 10BL 19BM 19BN 16BP 19
    BQ 22BR 22BS 22BT 22BU 19BV 19
    BX 16BY 13BZ 19CD 10CE 13CF 13
    CG 19CH 22CI 16CJ 16CK 13CL 13
    CM 22CN 22CP 19CQ 19CR 16CS 16
    CT 10CU 46CV 67CX 7CY 13CZ 19
    DE 16DF 13DG 19DH 13DI 10DJ ?
    DK 13DL 10DM 19DN 16DP 19DQ 4
    DR 10DS 10DT 10DU 10DV ?DX 10
    DY 10DZ 10EF 28EG 13EH 13EI 19
    EJ 16EK 10EL 19EM 43EN 28EP 16
    EQ 40ER 13ES 13ET 16EU 16EV 40
    EX 10EY 7EZ 22FG 22FH 16FI 25
    FJ 34FK 10FL 25FM 40FN 22FP 16
    FQ 25FR 22FS 10FT ?FU ?FV ?
    FX 7FY 13FZ 22GH 25GI 19GJ ?
    GK 13GL 13GM 22GN 19GP 40GQ 22
    GR 19GS 16GT 46GU 28GV ?GX 10
    GY 13GZ 22HI 22HJ 22HK 13HL 22
    HM 40HN 22HP 16HQ 40HR 16HS 13
    HT 13HU 22HV 40HX 4HY 10HZ 19
    IJ 28IK 10IL 13IM 13IN 22IP 28
    IQ 19IR 19IS 7IT 28IU ?IV 25
    IX 13IY 10IZ 28JK 13JL 16JM ?
    JN 16JP 10JQ 25JR 16JS 7JT 16
    JU ?JV ?JX 7JY 13JZ ?KL 7
    KM 13KN 10KP 7KQ 10KR 13KS 13
    KT 7KU 10KV 13KX 4KY 4KZ 10
    LM 16LN 16LP 52LQ 34LR 16LS 16
    LT ?LU 16LV ?LX 10LY 10LZ 52
    MN 13MP ?MQ ?MR 28MS 19MT ?
    MU ?MV ?MX 22MY 10MZ ?NP 22
    NQ 28NR 16NS 16NT ?NU ?NV 28
    NX 7NY 13NZ 16PQ 13PR 28PS 16
    PT 19PU 16PV ?PX 7PY 10PZ 19
    QR 16QS 13QT 19QU 13QV ?QX 4
    QY 13QZ 25RS 16RT 25RU 43RV 25
    RX 10RY 19RZ 25ST 19SU 13SV 19
    SX 13SY 10SZ 7TU ?TV ?TX 7
    TY 7TZ 22UV ?UX 16UY 10UZ 34
    VX 22VY 10VZ ?XY 4XZ 7YZ 13

    Last revised 2025-02-23.


    Back to Polyform Oddities < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]