Tri-Oddities for Heptiamond Pairs

A heptiamond is a plane figure formed by joining 7 equal equilateral triangles edge to edge. There are 24 heptiamonds:

A tri-oddity is an arrangement of copies of a polyform with ternary rotary symmetry or better, using a number of copies that is not a multiple of 3.

Here I show the smallest known tri-oddities that can be formed by copies of two heptiamonds, using at least one of each. If you find a smaller solution, please write.

See also:

  • Horizontally Symmetric Tri-Oddities for Heptiamond Pairs
  • Hexiamond Pair Tri-Oddities
  • AB 13AC 13AD 13AE 4AF 10AG 25
    AH 7AI 19AJ 10AK 7AL 13AM 22
    AN 10AP 10AQ 10AR 10AS 7AT 7
    AU 22AV 22AX 4AY 10AZ 10BC 13
    BD 7BE 7BF 13BG 10BH 10BI 16
    BJ 10BK 4BL 16BM 16BN 13BP 10
    BQ 16BR 13BS 10BT 16BU 16BV 16
    BX 4BY 4BZ 10CD 7CE 7CF 13
    CG 13CH 7CI 13CJ 10CK 10CL 10
    CM 13CN 10CP 7CQ 10CR 7CS 10
    CT 13CU 13CV 31CX 4CY 10CZ 10
    DE 10DF 13DG 34DH 7DI 10DJ 37
    DK 10DL 7DM 28DN 16DP 13DQ 4
    DR 10DS 4DT 7DU 10DV ?DX 4
    DY 10DZ 10EF 7EG 13EH 7EI 13
    EJ 16EK 10EL 16EM 22EN 16EP 10
    EQ 13ER 13ES 7ET 10EU 10EV 10
    EX 4EY 7EZ 13FG 10FH 13FI 31
    FJ 37FK 10FL 10FM 40FN 13FP 13
    FQ 10FR 10FS 7FT 10FU 13FV ?
    FX 4FY 7FZ 10GH 16GI 10GJ 13
    GK 7GL 10GM 31GN 10GP 19GQ 19
    GR 10GS 13GT 16GU 34GV 34GX 4
    GY 10GZ 13HI 10HJ 10HK 10HL 10
    HM 13HN 13HP 10HQ 13HR 10HS 4
    HT 7HU 16HV 16HX 4HY 10HZ 16
    IJ 16IK 10IL 10IM 10IN 13IP 16
    IQ 13IR 13IS 7IT 19IU ?IV 25
    IX 4IY 10IZ 19JK 10JL 13JM 16
    JN 10JP 7JQ 13JR 10JS 4JT 10
    JU 19JV 40JX 4JY 7JZ 16KL 7
    KM 10KN 10KP 7KQ 7KR 7KS 7
    KT 7KU 10KV 7KX 4KY 4KZ 10
    LM 16LN 10LP 22LQ 13LR 10LS 10
    LT 13LU 13LV ?LX 4LY 10LZ 10
    MN 10MP 22MQ ?MR 19MS 13MT 25
    MU ?MV ?MX 4MY 10MZ 19NP 16
    NQ 13NR 19NS 13NT 13NU ?NV 28
    NX 4NY 10NZ 10PQ 10PR 13PS 10
    PT 13PU 7PV 22PX 4PY 7PZ 7
    QR 16QS 7QT 13QU 13QV ?QX 4
    QY 10QZ 7RS 10RT 13RU 16RV 16
    RX 4RY 7RZ 19ST 7SU 7SV 10
    SX 4SY 7SZ 4TU 22TV 19TX 4
    TY 7TZ 13UV ?UX 4UY 10UZ 22
    VX 4VY 10VZ 16XY 4XZ 4YZ 10

    Last revised 2025-02-22.


    Back to Polyform Oddities < Polyform Curiosities
    Col. George Sicherman [ HOME | MAIL ]