James Bitner, Tiling
5n Χ 12
Rectangles with Y-pentominoes,
Journal of Recreational Mathematics
(1974), no. 4, pp. 276-278.
[MR]
Olivier Bodini, Tiling a Rectangle with Polyominoes,
Discrete Models for Complex Systems
(DMCS'03), pp. 81-88.
[MR]
Maarten Bos,
Tiling Squares with Two Different Hexominoes,
Cubism For Fun
(July 2007), pp. 4-7.
C.J. Bouwkamp and D.A. Klarner, Packing a Box with Y-pentacubes,
Journal of Recreational Mathematics
(1970), no. 1, pp. 10-26.
Chris Bouwkamp, The Cube-Y Problem,
Cubism For Fun
(December 1990 - January 1991), part 3, pp. 30-43.
Andrejs Cibulis and Ilvars Mizniks, Tiling Rectangles with Pentominoes,
Latvijas Universitātes Zinātniskie Raksti
(1998) pp. 57-61.
Andris Cibulis,
Packing Boxes with N-tetracubes,
Crux Mathematicorum with Mathematical Mayhem
(October 1997), no. 6, pp. 336-342.
Andris Cibulis and Andy Liu, Packing Rectangles with the L and P Pentominoes,
Math Horizons
(November 2001), no. 2, pp. 30-31.
Andrew L. Clarke,
A Pentomino Conjecture, Problem 600,
Journal of Recreational Mathematics
(1977-78), no. 1, p. 54.
◦ Solution by Mike Beeler, Journal of Recreational Mathematics (1979-80), no. 1, pp. 63-64.
◦ Solution by Mike Beeler, Journal of Recreational Mathematics (1979-80), no. 1, pp. 63-64.
Andrew L. Clarke,
Packing Boxes with Congruent Polycubes,
Journal of Recreational Mathematics
(1977-78), no. 3, pp. 177-182.
Karl A. Dahlke,
The Y-hexomino has order 92,
Journal of Combinatorial Theory, Series A
(1989), no. 1, pp. 125-126.
[MR]
Karl A. Dahlke,
A Heptomino of Order 76,
Journal of Combinatorial Theory, Series A
(1989), no. 1, pp. 127-128.
[MR]
◦ Erratum, Journal of Combinatorial Theory, Series A (1990), no. 2, p. 321. [MR]
◦ Erratum, Journal of Combinatorial Theory, Series A (1990), no. 2, p. 321. [MR]
Karl A. Dahlke,
Solomon W. Golomb and Herbert Taylor,
An Octomino of High Order,
Journal of Combinatorial Theory, Series A
(1995), no. 1, pp. 157-158.
[MR]
N.G. de Bruijn and D.A. Klarner,
A finite basis theorem for packing boxes with bricks,
Philips Research Reports
(1975), pp. 337-343.
Raymond R. Fletcher III, Tiling Rectangles with Symmetric Hexagonal Polyominoes,
Proceedings of the Twenty-seventh Southeastern International Conference
on Combinatorics, Graph Theory and Computing, Baton Rouge, LA, 1996,
Congressus Numerantium
(1996), pp. 3-29.
[MR]
Julian Fogel, Mark Goldenberg and Andy Liu,
Packing Rectangles with Y-Pentominoes,
Mathematics and Informatics Quarterly
(2001), no. 3, pp. 133-137.
Martin Gardner, Polyominoes and Rectification,
Chapter 13 in Mathematical Magic Show,
The Mathematical Association of America, 1989.
Frits Gφbel, Packing with Congruent Shapes,
Cubism For Fun
(December 1989), pp. 13-20.
Frits Gφbel, Prime pentacube packing,
Cubism For Fun
(February 1994), pp. 24-25.
S.W. Golomb,
Covering a Rectangle with L-tetrominoes, Problem E 1543,
American Mathematical Monthly
(November 1962), no. 9, p. 920.
◦ Solution to Problem E 1543, D.A. Klarner, American Mathematical Monthly (August-September 1963), no. 7, pp. 760-761.
◦ Solution to Problem E 1543, D.A. Klarner, American Mathematical Monthly (August-September 1963), no. 7, pp. 760-761.
Solomon W. Golomb,
Tiling with Polyominoes,
Journal of Combinatorial Theory
(1966) pp. 280-296.
[MR]
Solomon W. Golomb,
Tiling with Sets of Polyominoes,
Journal of Combinatorial Theory
(1970) pp. 60-71.
[MR]
Solomon W. Golomb,
Polyominoes Which Tile Rectangles,
Journal of Combinatorial Theory, Series A
(1989), no. 1, pp. 117-124.
[MR]
Solomon W. Golomb, Tiling Rectangles with Polyominoes,
Chapter 8 in Polyominoes, Second edition,
Princeton University Press, 1994.
Solomon W. Golomb,
Tiling Rectangles with Polyominoes,
in Mathematical entertainments, edited by David Gale,
The Mathematical Intelligencer
(1996), no. 2, pp. 38-47.
[MR]
Jenifer Haselgrove, Packing a Square with Y-pentominoes,
Journal of Recreational Mathematics
(1974), no. 3, p. 229.
Robert Hochberg and Michael Reid,
Tiling with Notched Cubes,
Discrete Mathematics
(2000), no. 1-3, pp. 255-261.
[MR]
[Zbl]
Ross Honsberger, Box packing problems, chapter 8 in Mathematics Gems II,
the Mathematical Association of America, Washington D.C. 1976.
◦ Ross Honsberger, Packungsprobleme, chapter 8 in Mathematische Juwelen, Springer Vieweg, 1982 (German translation of previous)
◦ Ross Honsberger, Packungsprobleme, chapter 8 in Mathematische Juwelen, Springer Vieweg, 1982 (German translation of previous)
Charles H. Jepsen, Lowell Vaughn and Daren Brantley,
Orders of L-shaped Polyominoes,
Journal of Recreational Mathematics
(2003-2004), no. 3, pp. 226-231.
Michał Kieza,
Zbudujmy z klockσw prostopadłościan (Polish),
Matematyka-Społeczeństwo-Nauczanie
(2011), pp. 32-40.
David A. Klarner,
Packing a Rectangle with Congruent N-ominoes,
Journal of Combinatorial Theory
(1969) pp. 107-115.
[MR]
David A. Klarner, Letter to the Editor,
Journal of Recreational Mathematics
(1970), no. 4, p. 258.
David A. Klarner,
A Finite Basis Theorem Revisited,
Technical Report CS-TR-73-338, Stanford University, February 1973.
David Klarner, A Search for N-pentacube Prime Boxes,
Journal of Recreational Mathematics
(1979-80), no. 4, pp. 252-257.
[MR]
D.A. Klarner and F. Gφbel, Packing boxes with congruent figures,
Indagationes Mathematicae
(1969) pp. 465-472.
[MR]
Earl S. Kramer, Tiling Rectangles with T and C Pentominoes,
Journal of Recreational Mathematics
(1983-84), no. 2, pp. 102-113.
[MR]
Earl S. Kramer and Frits Gφbel,
Tiling Rectangles with Pairs of Pentominoes,
Journal of Recreational Mathematics
(1983-84), no. 3, pp. 198-206.
[MR]
Rodolfo Marcelo Kurchan, Letter to the Editor,
Journal of Recreational Mathematics
(1991), no. 1, p. 5.
Rodolfo Marcelo Kurchan, Letter to the Editor,
Journal of Recreational Mathematics
(1992), no. 3, pp. 184-185.
Miklσs Laczkovich,
Tiling with T-tetrominoes, Problem 1263,
Mathematics Magazine
(April 1987), no. 2, p. 114.
◦ Solution to Problem 1263, Jerrold W. Grossman, Mathematics Magazine (April 1988), no. 2, pp. 119-120.
◦ Solution to Problem 1263, Jerrold W. Grossman, Mathematics Magazine (April 1988), no. 2, pp. 119-120.
Andy Liu, Packing Rectangles with Polynominoes,
Mathematical Medley
(June 2003), no. 1, pp. 2-11.
T.W. Marlow, Grid Dissections,
Chessics
(1985), pp. 78-79.
William Rex Marshall,
Packing Rectangles with Congruent Polyominoes,
Journal of Combinatorial Theory, Series A
(1997), no. 2, pp. 181-192.
[MR]
Jean Meeus, The Smallest U-N Square,
Journal of Recreational Mathematics
(1985-86), no. 1, p. 8.
Jean Meeus, Letter to the Editor,
Journal of Recreational Mathematics
(1985-86), no. 1, pp. 49, 51.
Michael Reid,
Letter to the Editor,
Journal of Recreational Mathematics
(1993), no. 2, pp. 149-150.
Michael Reid,
Tiling Rectangles and Half Strips with Congruent Polyominoes,
Journal of Combinatorial Theory, Series A
(1997), no. 1, pp. 106-123.
[MR]
[Zbl]
Michael Reid,
Tiling a Square with Eight Congruent Polyominoes,
Journal of Combinatorial Theory, Series A
(1998), no. 1, p. 158.
[Zbl]
Michael Reid,
Tiling with Similar Polyominoes,
Journal of Recreational Mathematics
(2002-2003), no. 1, pp. 15-24.
Michael Reid,
Tile Homotopy Groups,
L'Enseignement Mathιmatique
(2003), no. 1-2, pp. 123-155.
[MR]
[Zbl]
Michael Reid,
Klarner Systems and Tiling Boxes with Polyominoes,
Journal of Combinatorial Theory, Series A
(2005), no. 1, pp. 89-105.
[MR]
[Zbl]
Michael Reid,
Asymptotically Optimal Box Packing Theorems,
The Electronic Journal of Combinatorics
(2008), no. 1, R78, 19 pp.
[MR]
[Zbl]
Michael Reid,
Many L-Shaped Polyominoes Have Odd Rectangular Packings,
Annals of Combinatorics
(2014) pp. 341-357.
[MR]
[Zbl]
Karl Scherer,
Some New Results on Y-pentominoes,
Journal of Recreational Mathematics
(1979-80), no. 3, pp. 201-204.
[MR]
Karl Scherer,
Heptomino Tessellations, Problem 1045,
Journal of Recreational Mathematics
(1981-82), no. 1, p. 64.
◦ Solutions by Scherer, and Karl A. Dahlke, Journal of Recreational Mathematics (1989), no. 3, pp. 221-223.
◦ Solution by Karl A. Dahlke, Journal of Recreational Mathematics (1990), no. 1, pp. 68-69.
◦ Solutions by Scherer, and Karl A. Dahlke, Journal of Recreational Mathematics (1989), no. 3, pp. 221-223.
◦ Solution by Karl A. Dahlke, Journal of Recreational Mathematics (1990), no. 1, pp. 68-69.
Karl Scherer,
A Puzzling Journey To The Reptiles And Related Animals,
privately published, Auckland, New Zealand, 1987.
Karl Scherer,
Pentacube Packing Problems, Problem 1615,
Journal of Recreational Mathematics
(1988), no. 1, p. 78.
◦ Solution by Richard I. Hess, Journal of Recreational Mathematics (1989), no. 1, pp. 74-75.
◦ Solution by Karl Scherer, Journal of Recreational Mathematics (1992), no. 1, pp. 62-64.
◦ Solution by Richard I. Hess, Journal of Recreational Mathematics (1989), no. 1, pp. 74-75.
◦ Solution by Karl Scherer, Journal of Recreational Mathematics (1992), no. 1, pp. 62-64.
Karl Scherer,
The U-Pentacube Packing Problem, Problem 1963,
Journal of Recreational Mathematics
(1992), no. 2, p. 146.
◦ Solutions by Brian Barwell and Michael Reid, Journal of Recreational Mathematics (1993), no. 3, pp. 226-229.
◦ Solutions by Brian Barwell and Michael Reid, Journal of Recreational Mathematics (1993), no. 3, pp. 226-229.
Karl Scherer,
The T-Pentacube Packing Problem, Problem 1990,
Journal of Recreational Mathematics
(1992), no. 3, p. 224.
◦ Solutions by Frits Gφbel and Michael Beeler, Journal of Recreational Mathematics (1994), no. 1, pp. 66-67.
◦ Solutions by Frits Gφbel and Michael Beeler, Journal of Recreational Mathematics (1994), no. 1, pp. 66-67.
Karl Scherer,
The primes of a certain pentacube,
Journal of Recreational Mathematics
(1994), no. 1, pp. 1-2.
Robert Spira,
A Pavement of Tetrominoes, Problem E 1786,
American Mathematical Monthly
(May 1965), no. 5, p. 543.
◦ Solution to Problem E 1786, American Mathematical Monthly (June-July 1966), no. 6, p. 673.
◦ Solution to Problem E 1786, American Mathematical Monthly (June-July 1966), no. 6, p. 673.
Robert Spira,
Impossibility of Covering a Rectangle with L-Hexominoes, Problem E 1983,
American Mathematical Monthly
(April 1967), no. 4, p. 439.
◦ Solution to Problem E 1983, Dennis Gannon, American Mathematical Monthly (August-September 1968), no. 7, pp. 785-786.
◦ Solution to Problem E 1983, Dennis Gannon, American Mathematical Monthly (August-September 1968), no. 7, pp. 785-786.
I. N. Stewart and A. Wormstein, Polyominoes of Order 3 Do Not Exist,
Journal of Combinatorial Theory, Series A
(September 1992), no. 1, pp. 130-136.
[MR]
Pieter Torbijn and Aad van der Wetering,
Tiling Squares with Two Different Pentominoes,
Cubism For Fun
(November 2005), pp. 16-17.
Johan van de Konijnenberg,
Finding Prime Boxes of Pentacubes,
Cubism For Fun
(July 2009), pp. 18-20.
D.W. Walkup,
Covering a Rectangle with T-tetrominoes,
American Mathematical Monthly
(November 1965), no. 9, pp. 986-988.
[MR]
Ingo Wrede, Rechteckzerlegungen mit kleinen Polyominos, Diplomarbeit,
(1990) Technische Universitδt Braunschweig.