Tiling a Badge with a Pentahex and an Isolated Tetrahex
Introduction
A polyhex
is a plane figure formed by joining equal regular hexagons
edge to edge.
A pentahex is a polyhex with 5 cells.
There are 22 pentahexes, not distinguishing reflections and rotations.
A tetrahex is a polyhex with 4 cells.
There are 7 pentahexes, not distinguishing reflections and rotations.
Call a polyhex convex if the region enclosed by joining centers of
adjacent cells is convex.
A badge is a convex polyhex with 3-rotary symmetry and
horizontal mirror symmetry.
Here I tile minimal known badges with copies of a pentahex and a tetrahex
so that copies of the tetrahex do not touch.
See also
Table of Results
This table shows the number of cells in the smallest known badges.
If you find a smaller badge or solve an unsolved pair,
please write.
| Pentahex |
| A | C | D | E | F | H | I | J | K | L | N | P | Q | R | S | T | U | V | W | X | Y | Z |
I
| 42
| ?
| 27
| 27
| 141
| 333
| 60
| 42
| 42
| 42
| 27
| 42
| 42
| 213
| ?
| ?
| ?
| 73
| 393
| ?
| 27
| 42
|
J
| 27
| 27
| 27
| 153
| 27
| 27
| 106
| 27
| 27
| 48
| 27
| 27
| 27
| 27
| 42
| ?
| 27
| 57
| 57
| 27
| 42
| 42
|
O
| 27
| 123
| 27
| 66
| ?
| ?
| 126
| 141
| 27
| 33
| 42
| 27
| 27
| 27
| 27
| ?
| ?
| 27
| ?
| ?
| 33
| ?
|
Q
| 27
| 144
| 27
| 28
| 27
| 153
| 57
| 27
| 27
| 42
| 27
| 28
| 27
| 60
| 621
| ?
| 27
| 57
| 66
| 27
| 42
| 42
|
S
| 306
| ?
| 63
| 66
| 87
| ?
| 330
| 42
| ?
| 87
| 87
| 42
| ?
| 636
| ?
| ?
| 27
| 522
| ?
| ?
| 73
| ?
|
U
| 57
| ?
| 57
| 42
| ?
| 27
| 147
| 57
| 27
| 73
| 42
| 33
| 42
| 126
| ?
| ?
| 27
| 477
| ?
| 27
| 63
| 201
|
Y
| 645
| ?
| 73
| 696
| 351
| ?
| ?
| ?
| ?
| 87
| 57
| 57
| ?
| ?
| ?
| ?
| ?
| 582
| ?
| ?
| 123
| ?
|
Navigation
[27 Cells]
[28 Cells]
[33 Cells]
[42 Cells]
[48 Cells]
[57 Cells]
[60 Cells]
[63 Cells]
[66 Cells]
[73 Cells]
[87 Cells]
[106 Cells]
[123 Cells]
[126 Cells]
[141 Cells]
[144 Cells]
[147 Cells]
[153 Cells]
[201 Cells]
[213 Cells]
[306 Cells]
[330 Cells]
[333 Cells]
[351 Cells]
[393 Cells]
[477 Cells]
[522 Cells]
[582 Cells]
[621 Cells]
[636 Cells]
[645 Cells]
[696 Cells]
Last revised 2025-06-20.
Back to Polyhex Tiling
<
Polyform Tiling
<
Polyform Curiosities
Col. George Sicherman
[ HOME
| MAIL
]