Here are the 4 triaboloes:
A scaled polyabolo is one that may be used at various scale factors:
Here I show a rectangle tiled by a scaled triabolo and a scaled pentabolo, using at least one copy of each and as few total copies as is known to be possible. If you find a solution with fewer tiles or solve an unsolved case, please write.
See also
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | ? | ? | ? | 20 | 12 | 11 | 6 | ? | 3 | ? | 10 | ? | 4 | 10 | 4 | ? | 16 | ? | ? | 13 | 4 | 2 | 10 | 8 | 21 | 8 | ? | 12 | 3 | 4 |
| 2 | 7 | 5 | 6 | 6 | 6 | 3 | 6 | 4 | 2 | 7 | 5 | 6 | 3 | 5 | 3 | 6 | 6 | 6 | 5 | 6 | 6 | 3 | 7 | 3 | 7 | 3 | 3 | 3 | 2 | 3 |
| 3 | 196 | 8 | 28 | 12 | 54 | 14 | ? | ? | 3 | ? | 8 | 4 | ? | ? | 2 | 16 | 4 | 7 | 22 | 66 | 15 | ? | ? | 15 | 22 | 28 | 4 | 4 | 5 | 40 |
| 4 | 10 | 10 | 8 | 19 | 10 | 16 | 18 | 10 | 4 | 10 | 4 | 10 | 2 | 12 | 12 | 10 | 10 | 4 | 18 | 10 | 8 | 12 | 10 | 8 | 12 | 12 | 4 | 10 | 7 | 13 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Tiles | ||||||||
|---|---|---|---|---|---|---|---|---|
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 10 | 11 |
| 12 | 13 | 14 | 15 | 16 | 18 | 19 | 20 | 21 |
| 22 | 28 | 40 | 54 | 66 | 196 | |||
Last revised 2025-10-31.