Here are the 14 tetraboloes:
A scaled polyabolo is one that may be used at various scale factors:
Here I show a rectangle tiled by a scaled tetrabolo and a scaled pentabolo, using at least one copy of each and as few total copies as is known to be possible. If you find a solution with fewer tiles or solve an unsolved case, please write.
See also
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | ? | ? | 26 | 10 | ? | 4 | ? | 18 | 3 | ? | ? | ? | ? | 12 | 10 | 6 | ? | ? | 24 | ? | 6 | ? | ? | 6 | 12 | ? | 6 | ? | 4 | 18 |
| 2 | ? | ? | ? | ? | ? | 24 | ? | ? | 6 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | 17 | 8 | ? | 20 | ? | ? | ? | ? | 4 | 12 |
| 3 | 16 | 10 | 4 | 14 | 12 | 20 | 20 | 18 | 4 | 20 | 4 | 17 | 8 | 16 | 12 | 12 | 10 | 8 | 10 | 16 | 12 | 28 | 12 | 10 | 22 | 22 | 4 | 22 | 16 | 20 |
| 4 | ? | ? | ? | ? | ? | 52 | ? | ? | 5 | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | ? | 29 | ? | ? | 69 | ? | ? | ? | ? | 6 | 32 |
| 5 | ? | ? | ? | ? | ? | 48 | ? | ? | 3 | ? | 11 | ? | ? | 12 | ? | ? | ? | ? | ? | ? | 15 | 14 | ? | 10 | ? | ? | ? | ? | 3 | 6 |
| 6 | ? | ? | ? | 18 | 12 | 12 | 11 | ? | 3 | ? | 20 | ? | 4 | 12 | 4 | ? | 26 | ? | ? | 10 | 4 | 12 | 16 | 14 | 22 | 10 | ? | 12 | 8 | 4 |
| 7 | 28 | 28 | 36 | 24 | 28 | 6 | 56 | 10 | 4 | ? | 8 | 24 | 8 | 8 | 15 | 8 | 8 | 56 | 40 | ? | 8 | 8 | 28 | 7 | 8 | 10 | 6 | ? | 6 | 8 |
| 8 | ? | ? | 17 | 6 | ? | 6 | ? | 13 | 3 | ? | ? | ? | ? | 8 | 8 | 5 | ? | ? | 16 | ? | 5 | ? | ? | 5 | 8 | ? | 5 | ? | 6 | 41 |
| 9 | ? | ? | ? | ? | ? | 60 | ? | ? | 5 | ? | 48 | ? | ? | 8 | ? | ? | ? | ? | ? | ? | 26 | ? | ? | 24 | ? | ? | ? | ? | 5 | 12 |
| 10 | 44 | 40 | 20 | 18 | 48 | 8 | 48 | 10 | 6 | 76 | 34 | 40 | 18 | 24 | 8 | 8 | 44 | 32 | 24 | 22 | 8 | 14 | 8 | 8 | 20 | 20 | 8 | 17 | 4 | 8 |
| 11 | ? | ? | ? | ? | ? | 24 | ? | ? | 3 | ? | ? | ? | ? | ? | 8 | 8 | ? | ? | ? | ? | 34 | ? | ? | 82 | ? | ? | 23 | ? | ? | ? |
| 12 | 14 | 6 | 12 | 6 | 8 | 6 | 20 | 12 | 4 | 12 | 6 | 6 | 14 | 8 | 8 | 8 | 12 | 10 | 10 | 8 | 8 | 24 | 14 | 9 | 12 | 22 | 6 | 14 | 6 | 11 |
| 13 | ? | ? | ? | ? | ? | 80 | ? | ? | 3 | ? | 16 | ? | 17 | 16 | ? | ? | ? | ? | ? | ? | 17 | 40 | ? | 10 | ? | ? | ? | ? | 4 | 10 |
| 14 | 6 | 4 | 3 | 4 | 6 | 4 | 6 | 3 | 2 | 6 | 4 | 4 | 3 | 6 | 3 | 4 | 4 | 5 | 3 | 6 | 4 | 4 | 6 | 3 | 6 | 4 | 3 | 4 | 3 | 4 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| Tiles | ||||||||
|---|---|---|---|---|---|---|---|---|
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 20 |
| 22 | 23 | 24 | 26 | 28 | 29 | 32 | 34 | 36 |
| 40 | 41 | 44 | 48 | 52 | 56 | 60 | 69 | 76 |
| 80 | 82 | |||||||
Last revised 2025-10-22.